Analysis Ready Data Cubes: Perspectives for Earth System Research

Miguel D. Mahecha^{1,2} & Fabian Gans³

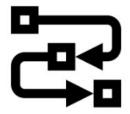
^{1 & 2}rsc4earth.de | twitter: @Rsc4Earth | @miguelmahechag1
³bgc-jena.mpg.de | twitter: @MPI_BGC | @meggarto

"Data Cubes" - a cluster of Pilots

Data cubes in the NFDI4Earth pilots

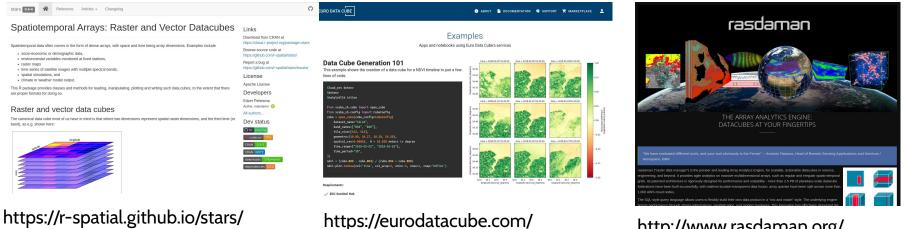
Statistical Learning on data cubes. Winkler et al.

Model evaluation in data cubes. Eyring et al.


EO4Glaciers data cube. Braun et al.

Socioeconomic data cubes. Kraemer et al.

Processing and Visualization. Unnithan et al.



UNIVERSITÄT

LEIPZIG

Data cubes emerge everywhere ...

OPEN DATA CUBE

http://www.rasdaman.org/

News

Contact

The Earth System Data Lab (ESDL) seeks to be a service to the scientific community to greatly facilitate access and exploitation of multivariate data sets in Earth Sciences.

https://www.earthsystemdatalab.net/

UNIVERSITÄT

LEIPZIG

https://www.opendatacube.org/

About

Overview

Install

Applications

Resources

Max Planck Institute for Biogeochemistry

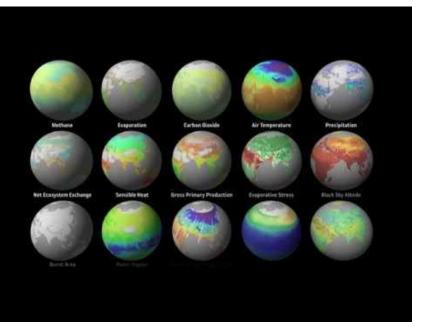
Overarching aim: Empower big gridded data

Getting data cubes "Analysis Ready":

- Avoiding complex data splits
- No further preprocessing
- Minimizing access barriers
- Enabling complex exploration
- Visualization

Fig top: Hannes Feilhauer

https://www.youtube.com/ → "ESDL Datacube"

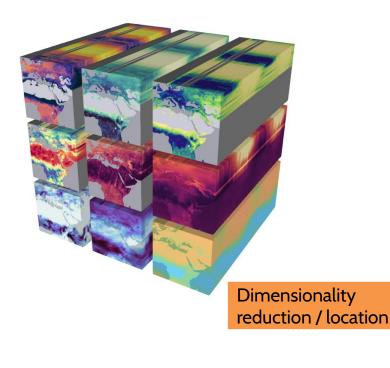


https://www.ecmwf.int/en/about/media-centre/focus/2017/fa ct-sheet-ensemble-weather-forecasting

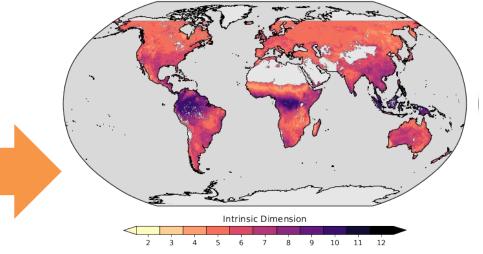
One example of "Analysis Ready Data Cubes"

https://www.earthsystemdatalab.net/

The Earth System is multivariate, and coupled across sub-domains!


- Towards multivariate exploitations
- Dimension-agnostic implementation
- Cube with interactive computing environment
- Mapping arbitrary user defined functions
- Cloud readiness

Mahecha, Gans et al. (2020) Earth System Dynamics, 11, 201-234.



Arbitrarily complex workflows can operate on the cube

Intrinsic dimensionality of land-surface dynamics

- What is the redundancy among all the land-surface variables?
- What are the minimum number of orthogonal dimensions needed?



Mahecha, Gans et al. (2020) Earth System Dynamics, 11, 201-234.

We need to prepare \rightarrow

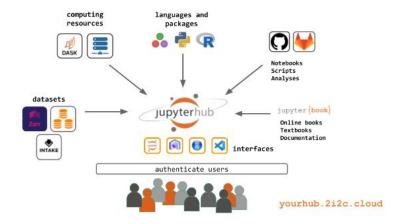
Challenges

- Very high-resolution data sets (observations and models!)
- Heterogeneous sources
- Work across repositories
- Multiple data cube solutions

At 1-kilometer resolution, a European climate model (left) is nearly indistinguishable from reality (right). (LEFTTO RIGHT) ECMWF; © EUMETSAT

Europe is building a 'digital twin' of Earth to revolutionize climate forecasts

By Paul Voosen Oct. 1, 2020 , 10:40 AM


But we are not alone \rightarrow

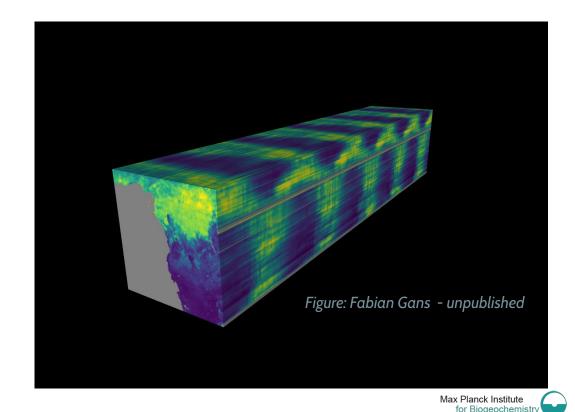
2i2c 2i2c Hubs Open Source About Us - Blog Contact

Interactive computing infrastructure for your **community**.

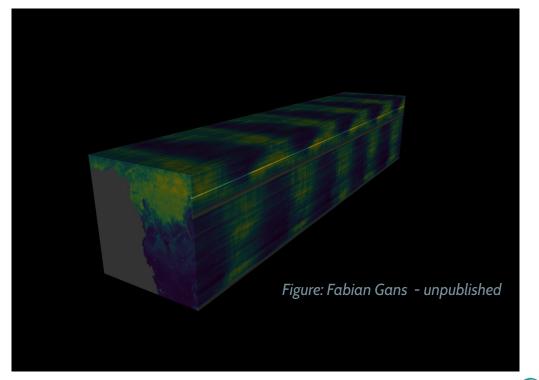
2i2c is a mission-driven non-profit that develops, deploys, customizes, and manages open source tools for interactive computing in research and education.

What's a 2i2c Hub?

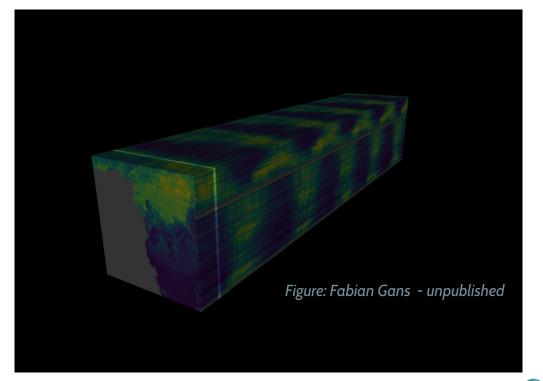
"2i2c Hub is a collection of open source tools that provide interactive computing environments in the cloud."



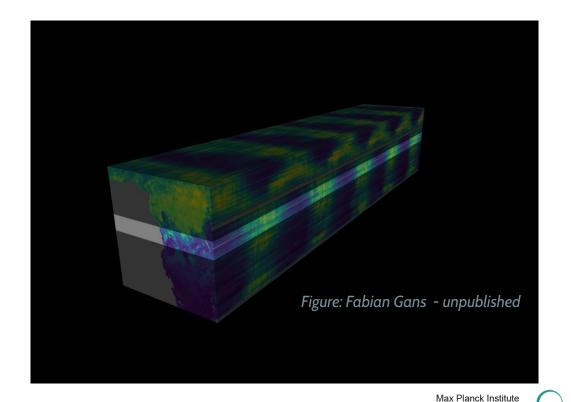
Analysis Ready Cloud Optimized Data Cubes



- Typically in NetCDF or HDF5
- Metadata + data in a single file
- File can be arbitrarily large
- Simple subsetting
- Made for filesystems, random access through seek operations



- Typically in NetCDF or HDF5
- Metadata + data in a single file
- File can be arbitrarily large
- Simple subsetting
- Made for filesystems, random access through seek operations



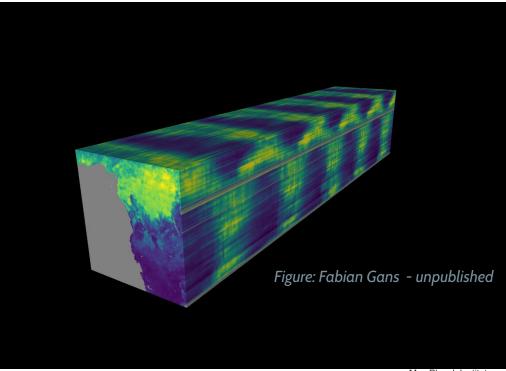
- Typically in NetCDF or HDF5
- Metadata + data in a single file
- File can be arbitrarily large
- Simple subsetting
- Made for filesystems, random access through seek operations

- Typically in NetCDF or HDF5
- Metadata + data in a single file
- File can be arbitrarily large
- Simple subsetting
- Made for filesystems, random access through seek operations

for Biogeochemistry

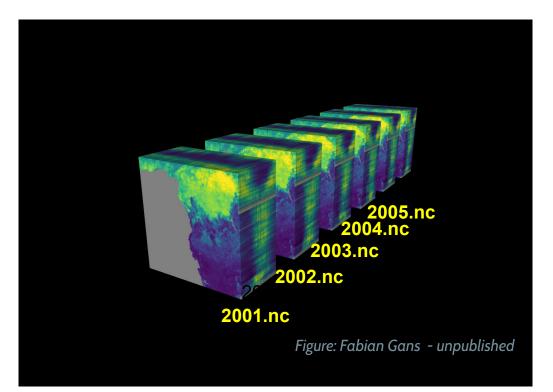
Storing data in the cloud

- Different characteristics than filesystem-based
- Objects in a bucket instead of file hierarchy
- Large latencies
- High data throughput (limited by network bandwidth)
- Access to objects, no seek operations possible
- Highly scalable



10

Max Planck Institute for Biogeochemistry



Max Planck Institute for Biogeochemistry

Split by years?

Bad because of:

- split metadata
- no way to quickly access metadata
- slow time series access

Use a cloud-optimized data format

Zarr - e.g. used in PANGEO TileDB Cloud-optimized GeoTiff HDF5 Cloud

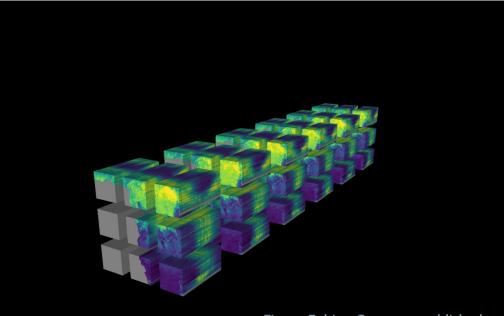


Figure: Fabian Gans - unpublished

Example "zarr" format - truly open

		fgans@ata	cama:/sgro	ss_primary_	_producti	vity\$ ls	- a
Array Metadata:		•	1.5.10	3.2.2	4.7.8	6.5.12	8.2.4
 data type 		••	1.5.11	3.2.3	4.7.9	6.5.13	8.2.5
• chunk size		.zarray	1.5.12	3.2.4	5.0.0	6.5.14	8.2.6
 endianness 		.zattrs	1.5.13	3.2.5	5.0.1	6.5.15	8.2.7
 compressor 	1	0.0.0	1.5.14	3.2.6	5.0.10	6.5.2	8.2.8
• filters		0.0.1	1.5.15	3.2.7	5.0.11	6.5.3	8.2.9
• fill value		0.0.10	1.5.2	3.2.8	5.0.12	6.5.4	8.3.0
		0.0.11	1.5.3	3.2.9	5.0.13	6.5.5	8.3.1
		0.0.12	1.5.4	3.3.0	5.0.14	6.5.6	8.3.10
		0.0.13	1.5.5	3.3.1	5.0.15	6.5.7	8.3.11
User Metadata:		0.0.14	1.5.6	3.3.10	5.0.2	6.5.8	8.3.12
 like netcdf attributes 		0.0.15	1.5.7	3.3.11	5.0.3	6.5.9	8.3.13
 units 		0.0.2	1.5.8	3.3.12	5.0.4	6.6.0	8.3.14
 creator 		0.0.3	1.5.9	3.3.13	5.0.5	6.6.1	8.3.15

• long name etc...

User API - simple but powerful

[30]: using ESDL, AWSCore, Zarr, Statistics, MultivariateStats, ESDLPlots

[Info: Precompiling ESDLPlots [d555b242-3f29-57aa-84ea-3df92a135dfd]
@ Base loading.jl:1278

[32]: aws = aws_config(creds=nothing, region="eu-de", service_name="obs", service_host="otc.t-systems.com")
store = S3Store("obs-esdc-v2.0.0", "esdc-8d-0.25deg-184x90x90-2.0.0.zarr", 2, aws)
zarr_group = zopen(store, consolidated = true)
ds = open dataset(zarr group)

[32]: YAXArray Dataset

Dimensions:

 lat
 Axis with 720 Elements from 89.875 to -89.875

 lon
 Axis with 1440 Elements from -179.875 to 179.875

 time
 Axis with 1702 Elements from 1980-01-05T00:00:00 to 2016-12-30T00:00:00

 isblact coil mainter year loop area index concible bast filt a total man from left or

Variables: soil_moisture xco2 leaf_area_index sensible_heat flt_c totcol_msr stemp free_lrt_c lrt_c potential_evaporation evaporation root_moi sture land_surface_temperature black_sky_albedo_avhrr precipitation free_flt_c open_water_evaporation lrt_p srex_mask latent_energy max_air_te mperature_2m xch4 cth psurf aerosol_optical_thickness_550 aerosol_optical_thickness_870 ctt air_temperature_2m msr_flt free_msr_lrt evaporativ e_stress precipitation_era5 aerosol_optical_thickness_670 snow_water_equivalent terrestrial_ecosystem_respiration black_sky_albedo analysed_ss t mask white_sky_albedo aerosol_optical_thickness_1600 totcol_assim fractional_snow_cover chlor_a gross_primary_productivity country_mask cer free_fat_c bare_soil_evaporation flt_p par net_radiation cot ozone pardiff transpiration white_sky_albedo_avhrr totcol_free cee surface_moistu re fat_p msr_lrt sea_ice_fraction water_vapour interception_loss free_msr_flt c_emissions cph ctp min_air_temperature_2m cfc water_mask lwp bu rnt_area fat_c fapar_tip net_ecosystem_exchange iwp snow_sublimation Rg

[11]: vars = ["evaporative_stress", "latent_energy", "black_sky_albedo_avhrr", "fapar_tip", "root moisture",

Max Planck Institute for Biogeochemistry

User API - simple but powerful

```
[]: function sufficient_dimensions(xin::AbstractArray, expl_var::Float64 = 0.95)
any(ismissing,xin) && return NaN
npoint, nvar = size(xin)
means = mean(xin, dims = 1)
stds = std(xin, dims = 1)
xin = broadcast((y,m,s) -> s>0.0 ? (y-m)/s : one(y), xin, means, stds)
pca = fit(PCA, xin', pratio = 0.999, method = :svd)
return findfirst(cumsum(principalvars(pca)) / tprincipalvar(pca) .> expl_var)
end
```

```
[ ]: cube_int_dim = mapslices(sufficient_dimensions, cube_fill, dims = ("Time","Variable"))
```

```
[36]: plotMAP(cube_int_dim)
```

```
[36]:
```


QUESTIONS?

Optimize chunks according to access pattern

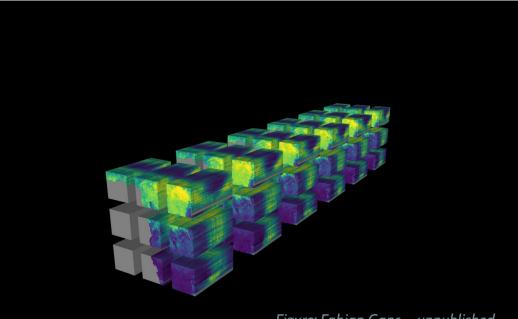
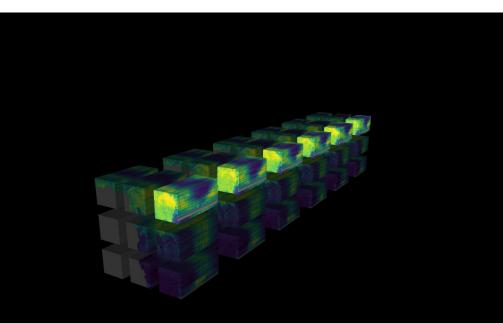
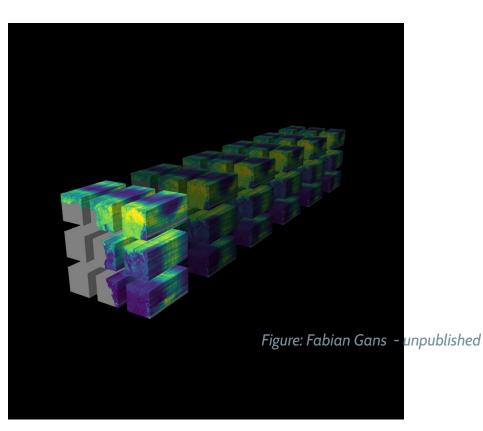


Figure: Fabian Gans - unpublished

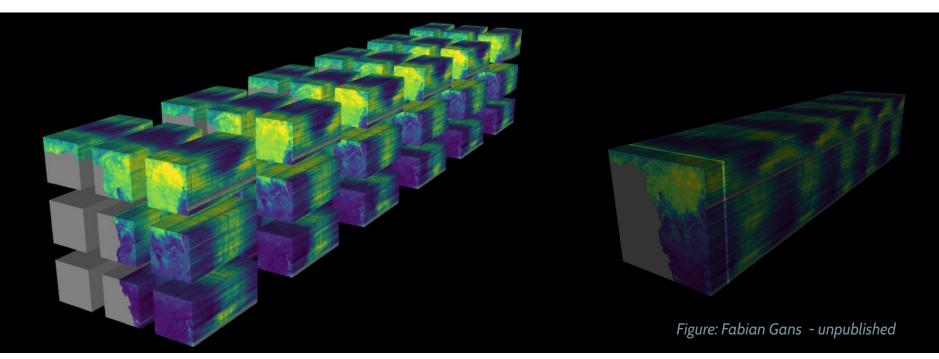
Optimize chunks according to access pattern

Time series




Figure: Fabian Gans - unpublished

Optimize chunks according to access pattern


Maps

Efficient storage

Fabian Gans (in prep) Efficient data cube storage of unlimited size filed

Regional cubes, specific cubes, all data in one concept

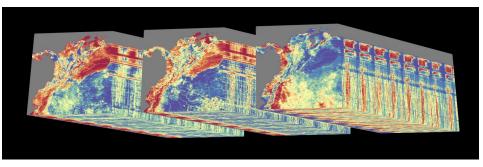
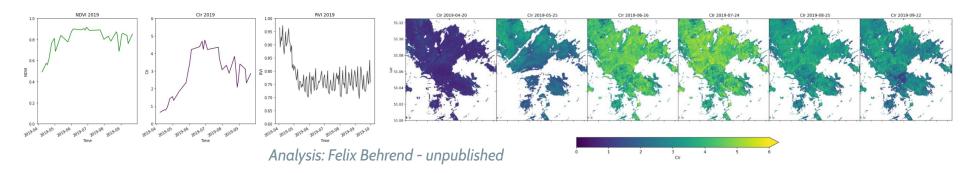
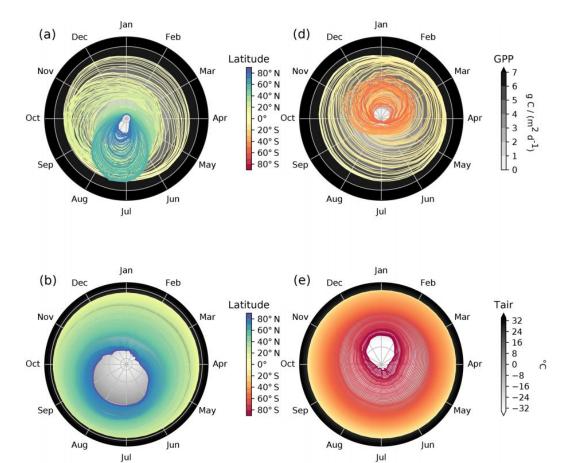
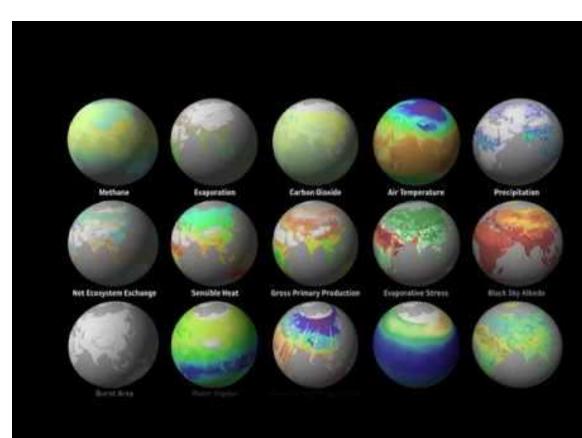



Figure: Miguel Mahecha - unpublished

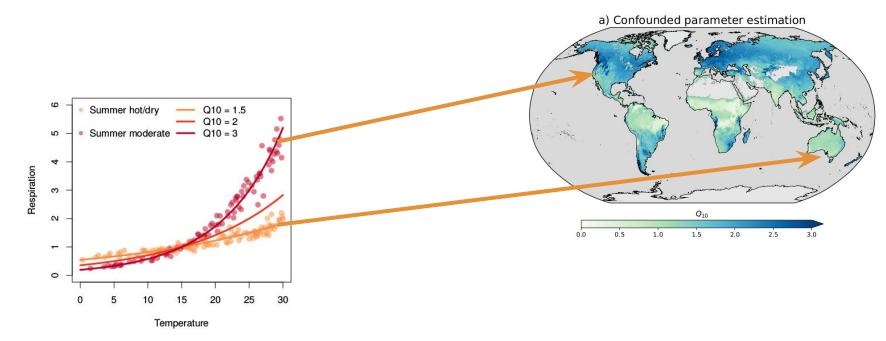


Very simple "two-line" operations

 $f^{\{\}}_{\{lat, lon, time\}} : \mathcal{C}(\{lat, lon, time\}) \to \mathcal{C}(\{\}).$

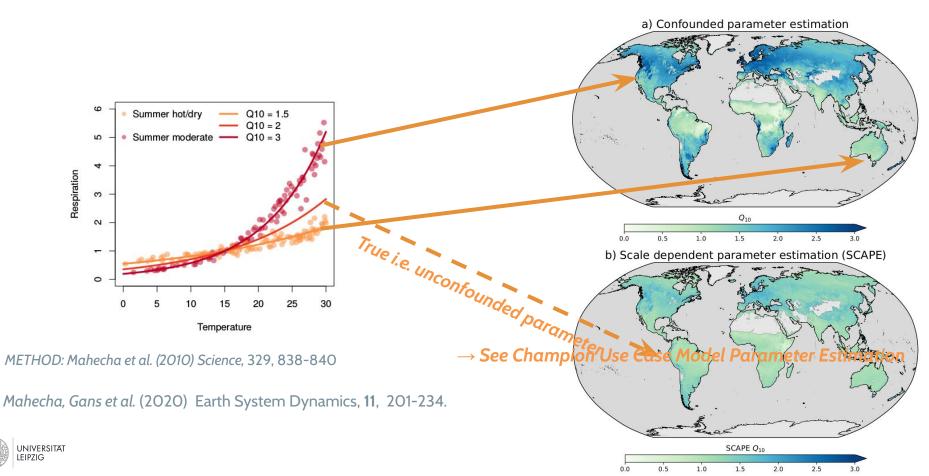

Mahecha, Gans et al. (2020) Earth System Dynamics, **11**, 201-234.

Very complicated workflows


https://www.earthsystemdatalab.net/

Mahecha, Gans et al. (2020) Earth System Dynamics, **11**, 201-234.

Potential for more complicated parameter estimation



Mahecha, Gans et al. (2020) Earth System Dynamics, 11, 201-234.

Potential for more complicated parameter estimation

Conclusions

- New in-situ and satellite remote sensing products refine our understanding of Earth system processes
- Flood of downstream data processes require new data analytic approaches
- We are at the edge to a do research in digital-twin Earths with unprecedented opportunities but without solving fundamental issues (physical data consistency, resolutions operationally at the level of true processes understanding etc....) → New ideas wanted

